Nuprl Lemma : pgeo-plsep_functionality

g:ProjectivePlane. ∀a,a1:Point. ∀l,l1:Line.  (a ≡ a1  l ≡ l1  {a ≠ ⇐⇒ a1 ≠ l1})


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-leq: a ≡ b pgeo-peq: a ≡ b pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point guard: {T} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  rev_implies:  Q uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] guard: {T}
Lemmas referenced :  pgeo-point_wf pgeo-line_wf pgeo-peq_wf pgeo-leq_wf pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-plsep_wf pgeo-peq-preserves-plsep pgeo-leq-preserves-plsep pgeo-leq_inversion pgeo-peq-sym
Rules used in proof :  because_Cache independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution independent_functionElimination dependent_functionElimination rename

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}a,a1:Point.  \mforall{}l,l1:Line.    (a  \mequiv{}  a1  {}\mRightarrow{}  l  \mequiv{}  l1  {}\mRightarrow{}  \{a  \mneq{}  l  \mLeftarrow{}{}\mRightarrow{}  a1  \mneq{}  l1\})



Date html generated: 2018_05_22-PM-00_45_39
Last ObjectModification: 2017_12_01-PM-05_33_39

Theory : euclidean!plane!geometry


Home Index