Nuprl Lemma : pgeo-sep-points-exist
∀g:ProjectivePlane. ∃a,b:Point. a ≠ b
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-psep: a ≠ b
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
projective-plane: ProjectivePlane
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-point_wf, 
exists_wf, 
pgeo-primitives_wf, 
projective-plane-structure_subtype, 
pgeo-psep_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
pgeo-three-points-axiom, 
point-implies-plsep-exists, 
pgeo-non-trivial
Rules used in proof : 
lambdaEquality, 
because_Cache, 
dependent_pairFormation, 
sqequalRule, 
independent_isectElimination, 
isectElimination, 
instantiate, 
applyEquality, 
productElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlane.  \mexists{}a,b:Point.  a  \mneq{}  b
Date html generated:
2018_05_22-PM-00_52_39
Last ObjectModification:
2017_11_28-PM-04_58_26
Theory : euclidean!plane!geometry
Home
Index