Nuprl Lemma : pgeo-sep-points-exist

g:ProjectivePlane. ∃a,b:Point. a ≠ b


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-psep: a ≠ b pgeo-point: Point all: x:A. B[x] exists: x:A. B[x]
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: and: P ∧ Q uimplies: supposing a guard: {T} uall: [x:A]. B[x] subtype_rel: A ⊆B exists: x:A. B[x] projective-plane: ProjectivePlane member: t ∈ T all: x:A. B[x]
Lemmas referenced :  pgeo-point_wf exists_wf pgeo-primitives_wf projective-plane-structure_subtype pgeo-psep_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype pgeo-three-points-axiom point-implies-plsep-exists pgeo-non-trivial
Rules used in proof :  lambdaEquality because_Cache dependent_pairFormation sqequalRule independent_isectElimination isectElimination instantiate applyEquality productElimination hypothesis hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  \mexists{}a,b:Point.  a  \mneq{}  b



Date html generated: 2018_05_22-PM-00_52_39
Last ObjectModification: 2017_11_28-PM-04_58_26

Theory : euclidean!plane!geometry


Home Index