Nuprl Lemma : point-implies-plsep-exists

g:ProjectivePlane. ∀a:Point.  ∃l:Line. a ≠ l


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] exists: x:A. B[x]
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] or: P ∨ Q record-select: r.x pgeo-plsep: a ≠ b pgeo-lpsep: a ≠ b implies:  Q pgeo-psep: a ≠ b pgeo-lsep: l ≠ m and: P ∧ Q exists: x:A. B[x] projective-plane: ProjectivePlane member: t ∈ T all: x:A. B[x] prop: cand: c∧ B
Lemmas referenced :  pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype projective-plane-structure_subtype pgeo-point_wf LP-sep-or pgeo-three-points-axiom pgeo-three-lines-axiom pgeo-plsep_wf use-triangle-axiom1 pgeo-plsep-to-psep pgeo-plsep-implies-join pgeo-incident_wf pgeo-line_wf pgeo-join_wf
Rules used in proof :  sqequalRule independent_isectElimination instantiate applyEquality isectElimination unionElimination independent_functionElimination because_Cache productElimination hypothesis hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_pairFormation independent_pairFormation productEquality setEquality lambdaEquality

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}a:Point.    \mexists{}l:Line.  a  \mneq{}  l



Date html generated: 2018_05_22-PM-00_42_04
Last ObjectModification: 2017_11_27-PM-04_08_19

Theory : euclidean!plane!geometry


Home Index