Nuprl Lemma : pgeo-unique_wf

g:ProjectivePlaneStructure. ∀l,m:Line. ∀p,q:Point.  (unique(lm,pq) ∈ ℙ)


Proof




Definitions occuring in Statement :  pgeo-unique: unique(lm,pq) projective-plane-structure: ProjectivePlaneStructure pgeo-line: Line pgeo-point: Point prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T pgeo-unique: unique(lm,pq) implies:  Q prop: uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q
Lemmas referenced :  pgeo-incident_wf projective-plane-structure_subtype not_wf pgeo-peq_wf pgeo-leq_wf pgeo-point_wf pgeo-line_wf projective-plane-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule functionEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis because_Cache productEquality

Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}l,m:Line.  \mforall{}p,q:Point.    (unique(lm,pq)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-00_32_38
Last ObjectModification: 2017_10_30-PM-01_52_29

Theory : euclidean!plane!geometry


Home Index