Nuprl Lemma : projective-plane-axioms

g:ProjectivePlane
  ((∀p,q,r:Point. ∀s:p ≠ q. ∀s1:q ≠ r.  (r ≠ p ∨  p ≠ q ∨ r))
  ∧ (∀p,q:Point. ∀l,m:Line. ∀s:p ≠ q. ∀s1:l ≠ m.  (p ≠  q ≠    l ∧ m ≠ p ∨ q)))


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-meet: l ∧ m pgeo-join: p ∨ q pgeo-lsep: l ≠ m pgeo-psep: a ≠ b pgeo-incident: b pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} squash: T sq_stable: SqStable(P) prop: uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T projective-plane: ProjectivePlane implies:  Q cand: c∧ B and: P ∧ Q all: x:A. B[x] triangle-axiom1: triangle-axiom1(g) triangle-axiom2: triangle-axiom2(g)
Lemmas referenced :  pgeo-lsep_wf pgeo-meet_wf pgeo-point_wf pgeo-psep_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype pgeo-plsep_wf pgeo-incident_wf projective-plane-structure_subtype pgeo-line_wf pgeo-join_wf sq_stable__pgeo-plsep
Rules used in proof :  independent_pairFormation independent_isectElimination instantiate imageElimination baseClosed imageMemberEquality independent_functionElimination because_Cache productEquality sqequalRule isectElimination setEquality lambdaEquality productElimination applyEquality hypothesis hypothesisEquality dependent_functionElimination extract_by_obid introduction rename thin setElimination sqequalHypSubstitution cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane
    ((\mforall{}p,q,r:Point.  \mforall{}s:p  \mneq{}  q.  \mforall{}s1:q  \mneq{}  r.    (r  \mneq{}  p  \mvee{}  q  {}\mRightarrow{}  p  \mneq{}  q  \mvee{}  r))
    \mwedge{}  (\mforall{}p,q:Point.  \mforall{}l,m:Line.  \mforall{}s:p  \mneq{}  q.  \mforall{}s1:l  \mneq{}  m.
              (p  \mneq{}  l  {}\mRightarrow{}  q  \mneq{}  m  {}\mRightarrow{}  p  I  m  {}\mRightarrow{}  q  I  l  {}\mRightarrow{}  l  \mwedge{}  m  \mneq{}  p  \mvee{}  q)))



Date html generated: 2018_05_22-PM-00_41_24
Last ObjectModification: 2017_11_28-PM-03_56_02

Theory : euclidean!plane!geometry


Home Index