Nuprl Lemma : tar-cong-angle_wf
∀[e:BasicGeometry]. ∀[a,b,c,x,y,z:Point].  (TAabc=TAxyz ∈ ℙ)
Proof
Definitions occuring in Statement : 
tar-cong-angle: TAabc=TAxyz
, 
basic-geometry: BasicGeometry
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
tar-cong-angle: TAabc=TAxyz
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
geo-congruent_wf, 
geo-between_wf, 
geo-point_wf, 
exists_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-sep_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c,x,y,z:Point].    (TAabc=TAxyz  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-06_23_50
Last ObjectModification:
2017_08_05-PM-04_18_00
Theory : euclidean!plane!geometry
Home
Index