Nuprl Lemma : tar-cong-angle_wf

[e:BasicGeometry]. ∀[a,b,c,x,y,z:Point].  (TAabc=TAxyz ∈ ℙ)


Proof




Definitions occuring in Statement :  tar-cong-angle: TAabc=TAxyz basic-geometry: BasicGeometry geo-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B and: P ∧ Q prop: tar-cong-angle: TAabc=TAxyz member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  geo-congruent_wf geo-between_wf geo-point_wf exists_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality lambdaEquality because_Cache independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c,x,y,z:Point].    (TAabc=TAxyz  \mmember{}  \mBbbP{})



Date html generated: 2017_10_02-PM-06_23_50
Last ObjectModification: 2017_08_05-PM-04_18_00

Theory : euclidean!plane!geometry


Home Index