Nuprl Lemma : test-prove-separated

e:BasicGeometry. ∀A,B,C,X,Y,Z,W,U,V:Point.
  ((A ≠ B ∨ A-X-B ∨ B-X-A)  (A_B_C ∨ C_B_A)  (Y_C_A ∨ A_C_Y)  (ZW ≅ AY ∨ ZW ≅ YA)  ZW ≅ UV  U ≠ V)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  guard: {T} subtype_rel: A ⊆B prop: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T or: P ∨ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-strict-between_wf geo-sep_wf geo-between_wf or_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-congruent_wf geo-strict-between-sep1 geo-between-sep geo-between-symmetry geo-sep-sym geo-congruent-sep geo-congruent-symmetry
Rules used in proof :  sqequalRule instantiate applyEquality independent_functionElimination because_Cache hypothesis independent_isectElimination isectElimination hypothesisEquality dependent_functionElimination extract_by_obid introduction cut thin unionElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,C,X,Y,Z,W,U,V:Point.
    ((A  \mneq{}  B  \mvee{}  A-X-B  \mvee{}  B-X-A)
    {}\mRightarrow{}  (A\_B\_C  \mvee{}  C\_B\_A)
    {}\mRightarrow{}  (Y\_C\_A  \mvee{}  A\_C\_Y)
    {}\mRightarrow{}  (ZW  \00D0  AY  \mvee{}  ZW  \00D0  YA)
    {}\mRightarrow{}  ZW  \00D0  UV
    {}\mRightarrow{}  U  \mneq{}  V)



Date html generated: 2017_10_02-PM-06_20_26
Last ObjectModification: 2017_08_05-PM-04_14_59

Theory : euclidean!plane!geometry


Home Index