Nuprl Lemma : test-prove-separated
∀e:BasicGeometry. ∀A,B,C,X,Y,Z,W,U,V:Point.
  ((A ≠ B ∨ A-X-B ∨ B-X-A) 
⇒ (A_B_C ∨ C_B_A) 
⇒ (Y_C_A ∨ A_C_Y) 
⇒ (ZW ≅ AY ∨ ZW ≅ YA) 
⇒ ZW ≅ UV 
⇒ U ≠ V)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-strict-between: a-b-c
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
geo-strict-between_wf, 
geo-sep_wf, 
geo-between_wf, 
or_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-congruent_wf, 
geo-strict-between-sep1, 
geo-between-sep, 
geo-between-symmetry, 
geo-sep-sym, 
geo-congruent-sep, 
geo-congruent-symmetry
Rules used in proof : 
sqequalRule, 
instantiate, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
unionElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,C,X,Y,Z,W,U,V:Point.
    ((A  \mneq{}  B  \mvee{}  A-X-B  \mvee{}  B-X-A)
    {}\mRightarrow{}  (A\_B\_C  \mvee{}  C\_B\_A)
    {}\mRightarrow{}  (Y\_C\_A  \mvee{}  A\_C\_Y)
    {}\mRightarrow{}  (ZW  \00D0  AY  \mvee{}  ZW  \00D0  YA)
    {}\mRightarrow{}  ZW  \00D0  UV
    {}\mRightarrow{}  U  \mneq{}  V)
Date html generated:
2017_10_02-PM-06_20_26
Last ObjectModification:
2017_08_05-PM-04_14_59
Theory : euclidean!plane!geometry
Home
Index