Nuprl Lemma : triangle-axiom1_wf
∀g:BasicProjectivePlane. (triangle-axiom1(g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
triangle-axiom1: triangle-axiom1(g)
, 
basic-projective-plane: BasicProjectivePlane
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
triangle-axiom1: triangle-axiom1(g)
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
basic-projective-plane: BasicProjectivePlane
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
pgeo-point_wf, 
projective-plane-structure_subtype, 
basic-projective-plane-subtype, 
subtype_rel_transitivity, 
basic-projective-plane_wf, 
projective-plane-structure_wf, 
pgeo-primitives_wf, 
pgeo-psep_wf, 
pgeo-plsep_wf, 
pgeo-join_wf, 
pgeo-line_wf, 
pgeo-incident_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
functionEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
setEquality, 
productEquality
Latex:
\mforall{}g:BasicProjectivePlane.  (triangle-axiom1(g)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-00_40_18
Last ObjectModification:
2017_11_07-PM-01_58_00
Theory : euclidean!plane!geometry
Home
Index