Nuprl Lemma : funspace_wf

[X,Y:Space].  (funspace(X;Y) ∈ Space)


Proof




Definitions occuring in Statement :  funspace: funspace(X;Y) topspace: Space uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  prop: so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B all: x:A. B[x] topspace: Space funspace: funspace(X;Y) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  topspace_wf equiv_rel_wf tfunequiv_wf topfuneq_wf topfun_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality universeEquality cumulativity functionEquality productEquality functionExtensionality applyEquality dependent_functionElimination because_Cache lambdaEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid dependent_pairEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:Space].    (funspace(X;Y)  \mmember{}  Space)



Date html generated: 2018_07_29-AM-09_48_54
Last ObjectModification: 2018_06_21-AM-10_41_34

Theory : inner!product!spaces


Home Index