Nuprl Lemma : funspace_wf
∀[X,Y:Space].  (funspace(X;Y) ∈ Space)
Proof
Definitions occuring in Statement : 
funspace: funspace(X;Y)
, 
topspace: Space
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
topspace: Space
, 
funspace: funspace(X;Y)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
topspace_wf, 
equiv_rel_wf, 
tfunequiv_wf, 
topfuneq_wf, 
topfun_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
productEquality, 
functionExtensionality, 
applyEquality, 
dependent_functionElimination, 
because_Cache, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
dependent_pairEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y:Space].    (funspace(X;Y)  \mmember{}  Space)
Date html generated:
2018_07_29-AM-09_48_54
Last ObjectModification:
2018_06_21-AM-10_41_34
Theory : inner!product!spaces
Home
Index