Nuprl Lemma : topfuneq_wf

[X,Y:Space]. ∀[f,g:topfun(X;Y)].  (topfuneq(X;Y;f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  topfuneq: topfuneq(X;Y;f;g) topfun: topfun(X;Y) topspace: Space uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] topfun: topfun(X;Y) so_lambda: λ2x.t[x] topfuneq: topfuneq(X;Y;f;g) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  topspace_wf topfun_wf topeq_wf toptype_wf all_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality rename setElimination applyEquality lambdaEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:Space].  \mforall{}[f,g:topfun(X;Y)].    (topfuneq(X;Y;f;g)  \mmember{}  \mBbbP{})



Date html generated: 2018_07_29-AM-09_48_24
Last ObjectModification: 2018_06_21-AM-10_12_57

Theory : inner!product!spaces


Home Index