Nuprl Lemma : topfuneq_wf
∀[X,Y:Space]. ∀[f,g:topfun(X;Y)].  (topfuneq(X;Y;f;g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
topfuneq: topfuneq(X;Y;f;g)
, 
topfun: topfun(X;Y)
, 
topspace: Space
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
topfun: topfun(X;Y)
, 
so_lambda: λ2x.t[x]
, 
topfuneq: topfuneq(X;Y;f;g)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
topspace_wf, 
topfun_wf, 
topeq_wf, 
toptype_wf, 
all_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
rename, 
setElimination, 
applyEquality, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y:Space].  \mforall{}[f,g:topfun(X;Y)].    (topfuneq(X;Y;f;g)  \mmember{}  \mBbbP{})
Date html generated:
2018_07_29-AM-09_48_24
Last ObjectModification:
2018_06_21-AM-10_12_57
Theory : inner!product!spaces
Home
Index