Nuprl Lemma : topeq_wf
∀[X:Space]. ∀[a,b:|X|].  (topeq(X;a;b) ∈ ℙ)
Proof
Definitions occuring in Statement : 
topeq: topeq(X;a;b)
, 
toptype: |X|
, 
topspace: Space
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
topspace: Space
, 
toptype: |X|
, 
topeq: topeq(X;a;b)
Lemmas referenced : 
top_wf, 
subtype_rel_product, 
equiv_rel_wf, 
pi2_wf, 
pi1_wf_top
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
lambdaFormation, 
independent_isectElimination, 
because_Cache, 
productEquality, 
lambdaEquality, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesisEquality, 
independent_pairEquality, 
productElimination, 
universeEquality, 
cumulativity, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[X:Space].  \mforall{}[a,b:|X|].    (topeq(X;a;b)  \mmember{}  \mBbbP{})
Date html generated:
2018_07_29-AM-09_47_47
Last ObjectModification:
2018_06_21-AM-10_18_17
Theory : inner!product!spaces
Home
Index