Nuprl Lemma : tfunequiv_wf
∀X,Y:Space.  (tfunequiv(X;Y) ∈ EquivRel(topfun(X;Y);f,g.topfuneq(X;Y;f;g)))
Proof
Definitions occuring in Statement : 
tfunequiv: tfunequiv(X;Y)
, 
topfuneq: topfuneq(X;Y;f;g)
, 
topfun: topfun(X;Y)
, 
topspace: Space
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
topfuneq-equiv-ext, 
tfunequiv: tfunequiv(X;Y)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
topfuneq_wf, 
topfun_wf, 
equiv_rel_wf, 
all_wf, 
topspace_wf, 
subtype_rel_self, 
topfuneq-equiv-ext
Rules used in proof : 
hypothesisEquality, 
cumulativity, 
lambdaEquality, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
introduction, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}X,Y:Space.    (tfunequiv(X;Y)  \mmember{}  EquivRel(topfun(X;Y);f,g.topfuneq(X;Y;f;g)))
Date html generated:
2018_07_29-AM-09_48_45
Last ObjectModification:
2018_06_21-AM-10_39_06
Theory : inner!product!spaces
Home
Index