Nuprl Lemma : tfunequiv_wf

X,Y:Space.  (tfunequiv(X;Y) ∈ EquivRel(topfun(X;Y);f,g.topfuneq(X;Y;f;g)))


Proof




Definitions occuring in Statement :  tfunequiv: tfunequiv(X;Y) topfuneq: topfuneq(X;Y;f;g) topfun: topfun(X;Y) topspace: Space equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] prop: so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B topfuneq-equiv-ext tfunequiv: tfunequiv(X;Y) member: t ∈ T all: x:A. B[x]
Lemmas referenced :  topfuneq_wf topfun_wf equiv_rel_wf all_wf topspace_wf subtype_rel_self topfuneq-equiv-ext
Rules used in proof :  hypothesisEquality cumulativity lambdaEquality functionEquality isectElimination sqequalHypSubstitution introduction hypothesis extract_by_obid instantiate thin applyEquality sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}X,Y:Space.    (tfunequiv(X;Y)  \mmember{}  EquivRel(topfun(X;Y);f,g.topfuneq(X;Y;f;g)))



Date html generated: 2018_07_29-AM-09_48_45
Last ObjectModification: 2018_06_21-AM-10_39_06

Theory : inner!product!spaces


Home Index