Nuprl Lemma : topeq_transitivity

X:Space. ∀a,b,c:|X|.  (topeq(X;a;b)  topeq(X;b;c)  topeq(X;a;c))


Proof




Definitions occuring in Statement :  topeq: topeq(X;a;b) toptype: |X| topspace: Space all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  trans: Trans(T;x,y.E[x; y]) guard: {T} uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y]) member: t ∈ T all: x:A. B[x]
Lemmas referenced :  topspace_wf toptype_wf topeq_wf topeq-equiv
Rules used in proof :  independent_functionElimination isectElimination productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}X:Space.  \mforall{}a,b,c:|X|.    (topeq(X;a;b)  {}\mRightarrow{}  topeq(X;b;c)  {}\mRightarrow{}  topeq(X;a;c))



Date html generated: 2018_07_29-AM-09_48_05
Last ObjectModification: 2018_06_21-AM-10_28_32

Theory : inner!product!spaces


Home Index