Nuprl Lemma : topfuneq-equiv
∀X,Y:Space.  EquivRel(topfun(X;Y);f,g.topfuneq(X;Y;f;g))
Proof
Definitions occuring in Statement : 
topfuneq: topfuneq(X;Y;f;g)
, 
topfun: topfun(X;Y)
, 
topspace: Space
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
topfun: topfun(X;Y)
, 
topfuneq: topfuneq(X;Y;f;g)
, 
trans: Trans(T;x,y.E[x; y])
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sym: Sym(T;x,y.E[x; y])
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
refl: Refl(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
Lemmas referenced : 
topeq_transitivity, 
topeq_inversion, 
toptype_wf, 
topeq_weakening, 
topspace_wf, 
topfuneq_wf, 
topfun_wf
Rules used in proof : 
independent_functionElimination, 
rename, 
setElimination, 
applyEquality, 
dependent_functionElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}X,Y:Space.    EquivRel(topfun(X;Y);f,g.topfuneq(X;Y;f;g))
Date html generated:
2018_07_29-AM-09_48_29
Last ObjectModification:
2018_06_21-AM-10_27_55
Theory : inner!product!spaces
Home
Index