Nuprl Lemma : topfuneq-equiv

X,Y:Space.  EquivRel(topfun(X;Y);f,g.topfuneq(X;Y;f;g))


Proof




Definitions occuring in Statement :  topfuneq: topfuneq(X;Y;f;g) topfun: topfun(X;Y) topspace: Space equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x]
Definitions unfolded in proof :  topfun: topfun(X;Y) topfuneq: topfuneq(X;Y;f;g) trans: Trans(T;x,y.E[x; y]) prop: implies:  Q sym: Sym(T;x,y.E[x; y]) cand: c∧ B uall: [x:A]. B[x] member: t ∈ T refl: Refl(T;x,y.E[x; y]) and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x]
Lemmas referenced :  topeq_transitivity topeq_inversion toptype_wf topeq_weakening topspace_wf topfuneq_wf topfun_wf
Rules used in proof :  independent_functionElimination rename setElimination applyEquality dependent_functionElimination because_Cache hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}X,Y:Space.    EquivRel(topfun(X;Y);f,g.topfuneq(X;Y;f;g))



Date html generated: 2018_07_29-AM-09_48_29
Last ObjectModification: 2018_06_21-AM-10_27_55

Theory : inner!product!spaces


Home Index