Nuprl Lemma : distributive-lattice-dual-distrib2
∀[L:DistributiveLattice]. ∀[a,b,c:Point(L)]. (b ∧ c ∨ a = b ∨ a ∧ c ∨ a ∈ Point(L))
Proof
Definitions occuring in Statement :
distributive-lattice: DistributiveLattice
,
lattice-join: a ∨ b
,
lattice-meet: a ∧ b
,
lattice-point: Point(l)
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
distributive-lattice: DistributiveLattice
,
and: P ∧ Q
,
lattice-axioms: lattice-axioms(l)
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
equal_wf,
squash_wf,
true_wf,
lattice-join_wf,
lattice-meet_wf,
lattice-point_wf,
lattice-structure_wf,
iff_weakening_equal,
distributive-lattice-dual-distrib,
distributive-lattice_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
hypothesisEquality,
sqequalHypSubstitution,
setElimination,
thin,
rename,
productElimination,
applyEquality,
lambdaEquality,
imageElimination,
extract_by_obid,
isectElimination,
equalityTransitivity,
hypothesis,
equalitySymmetry,
universeEquality,
because_Cache,
natural_numberEquality,
sqequalRule,
imageMemberEquality,
baseClosed,
independent_isectElimination,
independent_functionElimination,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[L:DistributiveLattice]. \mforall{}[a,b,c:Point(L)]. (b \mwedge{} c \mvee{} a = b \mvee{} a \mwedge{} c \mvee{} a)
Date html generated:
2017_10_05-AM-00_31_15
Last ObjectModification:
2017_07_28-AM-09_12_59
Theory : lattices
Home
Index