Nuprl Lemma : general-lattice-axioms_wf

[l:GeneralBoundedLatticeStructure]. (general-lattice-axioms(l) ∈ ℙ)


Proof




Definitions occuring in Statement :  general-lattice-axioms: general-lattice-axioms(l) general-bounded-lattice-structure: GeneralBoundedLatticeStructure uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T general-lattice-axioms: general-lattice-axioms(l) prop: and: P ∧ Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equiv_rel_wf lattice-point_wf bounded-lattice-structure-subtype general-bounded-lattice-structure-subtype subtype_rel_transitivity general-bounded-lattice-structure_wf bounded-lattice-structure_wf lattice-structure_wf lattice-equiv_wf uall_wf lattice-meet_wf lattice-join_wf lattice-0_wf lattice-1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination lambdaEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[l:GeneralBoundedLatticeStructure].  (general-lattice-axioms(l)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-11_50_58
Last ObjectModification: 2015_12_28-PM-01_55_12

Theory : lattices


Home Index