Nuprl Lemma : p-type_wf
PType ∈ 𝕌'
Proof
Definitions occuring in Statement : 
p-type: PType
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
p-type: PType
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
quotient_wf, 
iff_wf, 
equiv_rel_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
universeEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
cumulativity, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
independent_isectElimination
Latex:
PType  \mmember{}  \mBbbU{}'
Date html generated:
2019_10_31-AM-07_19_43
Last ObjectModification:
2018_10_15-PM-01_15_36
Theory : lattices
Home
Index