Nuprl Lemma : power-vs_wf
∀[K:Rng]. ∀[S:Type].  (K^S ∈ VectorSpace(K))
Proof
Definitions occuring in Statement : 
power-vs: K^S
, 
vector-space: VectorSpace(K)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
rng: Rng
Definitions unfolded in proof : 
power-vs: K^S
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
one-dim-vs_wf, 
vs-exp_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:Rng].  \mforall{}[S:Type].    (K\^{}S  \mmember{}  VectorSpace(K))
Date html generated:
2018_05_22-PM-09_42_39
Last ObjectModification:
2018_01_09-PM-01_03_04
Theory : linear!algebra
Home
Index