Nuprl Lemma : sub-vs-point-subtype

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  (Point((v:vs P[v])) ⊆Point(vs))


Proof




Definitions occuring in Statement :  sub-vs: (v:vs P[v]) vector-space: VectorSpace(K) vs-point: Point(vs) subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] function: x:A ⟶ B[x] rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T vs-point: Point(vs) sub-vs: (v:vs P[v]) mk-vs: mk-vs all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt subtype_rel: A ⊆B so_apply: x[s] prop: rng: Rng
Lemmas referenced :  rec_select_update_lemma istype-void subtype_rel_self vs-point_wf vector-space_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis lambdaEquality_alt setElimination rename hypothesisEquality setIsType because_Cache universeIsType applyEquality instantiate isectElimination universeEquality axiomEquality functionIsType isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].    (Point((v:vs  |  P[v]))  \msubseteq{}r  Point(vs))



Date html generated: 2019_10_31-AM-06_26_49
Last ObjectModification: 2019_08_12-PM-01_23_33

Theory : linear!algebra


Home Index