Nuprl Lemma : sub-vs-point-subtype
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  (Point((v:vs | P[v])) ⊆r Point(vs))
Proof
Definitions occuring in Statement : 
sub-vs: (v:vs | P[v])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
vs-point: Point(vs)
, 
sub-vs: (v:vs | P[v])
, 
mk-vs: mk-vs, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
, 
rng: Rng
Lemmas referenced : 
rec_select_update_lemma, 
istype-void, 
subtype_rel_self, 
vs-point_wf, 
vector-space_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
lambdaEquality_alt, 
setElimination, 
rename, 
hypothesisEquality, 
setIsType, 
because_Cache, 
universeIsType, 
applyEquality, 
instantiate, 
isectElimination, 
universeEquality, 
axiomEquality, 
functionIsType, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].    (Point((v:vs  |  P[v]))  \msubseteq{}r  Point(vs))
Date html generated:
2019_10_31-AM-06_26_49
Last ObjectModification:
2019_08_12-PM-01_23_33
Theory : linear!algebra
Home
Index