Nuprl Lemma : vs-id-map_wf

[K:Rng]. ∀[vs:VectorSpace(K)].  (id ∈ vs ⟶ vs)


Proof




Definitions occuring in Statement :  vs-id-map: id vs-map: A ⟶ B vector-space: VectorSpace(K) uall: [x:A]. B[x] member: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T vs-id-map: id vs-map: A ⟶ B rng: Rng and: P ∧ Q cand: c∧ B all: x:A. B[x]
Lemmas referenced :  vs-point_wf vs-add_wf vs-mul_wf rng_car_wf rng_properties vector-space_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule dependent_set_memberEquality_alt lambdaEquality_alt hypothesisEquality universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesis lambdaFormation_alt because_Cache inhabitedIsType independent_pairFormation productIsType functionIsType equalityIstype applyEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].    (id  \mmember{}  vs  {}\mrightarrow{}  vs)



Date html generated: 2019_10_31-AM-06_27_03
Last ObjectModification: 2019_08_13-PM-01_58_18

Theory : linear!algebra


Home Index