Nuprl Lemma : vs-subspace_functionality
∀K:RngSig. ∀vs:VectorSpace(K).
  ∀[P,Q:Point(vs) ⟶ ℙ].  ((∀x:Point(vs). (P[x] 
⇐⇒ Q[x])) 
⇒ {vs-subspace(K;vs;x.P[x]) 
⇒ vs-subspace(K;vs;x.Q[x])})
Proof
Definitions occuring in Statement : 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
rng_sig: RngSig
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
and: P ∧ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
vs-subspace_wf, 
vs-point_wf, 
subtype_rel_self, 
vector-space_wf, 
rng_sig_wf, 
vs-0_wf, 
vs-mul_wf, 
rng_car_wf, 
vs-add_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
independent_pairFormation, 
productElimination, 
thin, 
promote_hyp, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
hypothesis, 
functionIsType, 
productIsType, 
instantiate, 
universeEquality, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}K:RngSig.  \mforall{}vs:VectorSpace(K).
    \mforall{}[P,Q:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
        ((\mforall{}x:Point(vs).  (P[x]  \mLeftarrow{}{}\mRightarrow{}  Q[x]))  {}\mRightarrow{}  \{vs-subspace(K;vs;x.P[x])  {}\mRightarrow{}  vs-subspace(K;vs;x.Q[x])\})
Date html generated:
2019_10_31-AM-06_26_47
Last ObjectModification:
2019_08_12-PM-03_12_42
Theory : linear!algebra
Home
Index