Nuprl Lemma : sets-comp

[C:SmallCategory]. ∀[X:Top].  (cat-comp(sets(C; X)) ~ λAa,Bb,Dd,f,g. (cat-comp(C) (fst(Aa)) (fst(Bb)) (fst(Dd)) g))


Proof




Definitions occuring in Statement :  sets: sets(C; X) cat-comp: cat-comp(C) small-category: SmallCategory uall: [x:A]. B[x] top: Top pi1: fst(t) apply: a lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory spreadn: spread4 sets: sets(C; X) all: x:A. B[x] top: Top presheaf-elements: el(P) mk-cat: mk-cat and: P ∧ Q
Lemmas referenced :  cat_comp_tuple_lemma op-cat-comp top_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis equalityTransitivity equalitySymmetry isectElimination sqequalAxiom because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:Top].
    (cat-comp(sets(C;  X))  \msim{}  \mlambda{}Aa,Bb,Dd,f,g.  (cat-comp(C)  (fst(Aa))  (fst(Bb))  (fst(Dd))  f  g))



Date html generated: 2018_05_22-PM-09_59_19
Last ObjectModification: 2018_05_20-PM-09_42_14

Theory : presheaf!models!of!type!theory


Home Index