Nuprl Lemma : sub_ps_context_self

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)].  sub_ps_context{j:l}(C; X; X)


Proof




Definitions occuring in Statement :  sub_ps_context: Y ⊆ X ps_context: __⊢ uall: [x:A]. B[x] small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sub_ps_context: Y ⊆ X subtype_rel: A ⊆B
Lemmas referenced :  sub_ps_context_weakening ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType instantiate applyEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].    sub\_ps\_context\{j:l\}(C;  X;  X)



Date html generated: 2020_05_20-PM-01_24_48
Last ObjectModification: 2020_04_01-AM-11_00_43

Theory : presheaf!models!of!type!theory


Home Index