Nuprl Lemma : KripkeSchema_wf
KripkeSchema ∈ ℙ'
Proof
Definitions occuring in Statement : 
KripkeSchema: KripkeSchema, 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
KripkeSchema: KripkeSchema, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
implies: P ⇒ Q, 
so_apply: x[s], 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x]
Lemmas referenced : 
all_wf, 
exists_wf, 
nat_wf, 
equal-wf-T-base, 
not_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
lambdaEquality, 
functionEquality, 
hypothesis, 
because_Cache, 
productEquality, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
functionExtensionality, 
cumulativity
Latex:
KripkeSchema  \mmember{}  \mBbbP{}'
 Date html generated: 
2017_10_03-AM-10_16_15
 Last ObjectModification: 
2017_09_18-PM-05_19_08
Theory : reals
Home
Index