Nuprl Lemma : closed-rset_wf

[A:ℝ ⟶ ℙ]. (closed-rset(A) ∈ ℙ)


Proof




Definitions occuring in Statement :  closed-rset: closed-rset(A) real: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  closed-rset: closed-rset(A) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf real_wf member-closure_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality functionEquality hypothesisEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality

Latex:
\mforall{}[A:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].  (closed-rset(A)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_11_08
Last ObjectModification: 2015_12_28-AM-01_16_41

Theory : reals


Home Index