Nuprl Lemma : comparison-test-ext
∀y:ℕ ⟶ ℝ. (Σn.y[n]↓ ⇒ (∀x:ℕ ⟶ ℝ. Σn.x[n]↓ supposing ∀n:ℕ. (|x[n]| ≤ y[n])))
Proof
Definitions occuring in Statement : 
series-converges: Σn.x[n]↓, 
rleq: x ≤ y, 
rabs: |x|, 
real: ℝ, 
nat: ℕ, 
uimplies: b supposing a, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
accelerate: accelerate(k;f), 
comparison-test, 
converges-iff-cauchy-ext, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
top: Top, 
uimplies: b supposing a, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
or: P ∨ Q, 
squash: ↓T
Lemmas referenced : 
comparison-test, 
lifting-strict-spread, 
istype-void, 
strict4-apply, 
value-type-has-value, 
int-value-type, 
has-value_wf_base, 
istype-base, 
is-exception_wf, 
istype-universe, 
converges-iff-cauchy-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
callbyvalueAdd, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
productElimination, 
intEquality, 
universeIsType, 
addExceptionCases, 
exceptionSqequal, 
inrFormation_alt, 
imageMemberEquality, 
imageElimination, 
inlFormation_alt
Latex:
\mforall{}y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (\mSigma{}n.y[n]\mdownarrow{}  {}\mRightarrow{}  (\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mSigma{}n.x[n]\mdownarrow{}  supposing  \mforall{}n:\mBbbN{}.  (|x[n]|  \mleq{}  y[n])))
Date html generated:
2019_10_29-AM-10_25_45
Last ObjectModification:
2019_04_02-AM-00_16_31
Theory : reals
Home
Index