Nuprl Lemma : comparison-test-ext

y:ℕ ⟶ ℝn.y[n]↓  (∀x:ℕ ⟶ ℝ. Σn.x[n]↓ supposing ∀n:ℕ(|x[n]| ≤ y[n])))


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ rleq: x ≤ y rabs: |x| real: nat: uimplies: supposing a so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T so_apply: x[s] so_lambda: λ2x.t[x] accelerate: accelerate(k;f) comparison-test converges-iff-cauchy-ext uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: or: P ∨ Q squash: T
Lemmas referenced :  comparison-test lifting-strict-spread istype-void strict4-apply value-type-has-value int-value-type has-value_wf_base istype-base is-exception_wf istype-universe converges-iff-cauchy-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination independent_pairFormation lambdaFormation_alt callbyvalueAdd baseApply closedConclusion hypothesisEquality productElimination intEquality universeIsType addExceptionCases exceptionSqequal inrFormation_alt imageMemberEquality imageElimination inlFormation_alt

Latex:
\mforall{}y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (\mSigma{}n.y[n]\mdownarrow{}  {}\mRightarrow{}  (\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mSigma{}n.x[n]\mdownarrow{}  supposing  \mforall{}n:\mBbbN{}.  (|x[n]|  \mleq{}  y[n])))



Date html generated: 2019_10_29-AM-10_25_45
Last ObjectModification: 2019_04_02-AM-00_16_31

Theory : reals


Home Index