Nuprl Lemma : converges-absolutely-converges

x:ℕ ⟶ ℝ(converges-absolutely(n.x[n])  Σn.x[n]↓)


Proof




Definitions occuring in Statement :  converges-absolutely: converges-absolutely(n.x[n]) series-converges: Σn.x[n]↓ real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  converges-absolutely: converges-absolutely(n.x[n]) all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] uimplies: supposing a prop:
Lemmas referenced :  comparison-test rabs_wf nat_wf rleq_weakening_equal series-converges_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin lambdaEquality isectElimination applyEquality hypothesisEquality hypothesis independent_functionElimination independent_isectElimination because_Cache functionEquality

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (converges-absolutely(n.x[n])  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{})



Date html generated: 2016_05_18-AM-08_00_07
Last ObjectModification: 2015_12_28-AM-01_10_24

Theory : reals


Home Index