Nuprl Lemma : converges-absolutely-converges
∀x:ℕ ⟶ ℝ. (converges-absolutely(n.x[n]) 
⇒ Σn.x[n]↓)
Proof
Definitions occuring in Statement : 
converges-absolutely: converges-absolutely(n.x[n])
, 
series-converges: Σn.x[n]↓
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
converges-absolutely: converges-absolutely(n.x[n])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
comparison-test, 
rabs_wf, 
nat_wf, 
rleq_weakening_equal, 
series-converges_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lambdaEquality, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
independent_isectElimination, 
because_Cache, 
functionEquality
Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (converges-absolutely(n.x[n])  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{})
Date html generated:
2016_05_18-AM-08_00_07
Last ObjectModification:
2015_12_28-AM-01_10_24
Theory : reals
Home
Index