Nuprl Lemma : homeomorphic_wf

[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)].  (homeomorphic(X;dX;Y;dY) ∈ ℙ)


Proof




Definitions occuring in Statement :  homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T homeomorphic: homeomorphic(X;dX;Y;dY) prop: exists: x:A. B[x] and: P ∧ Q mfun: FUN(X ⟶ Y)
Lemmas referenced :  mfun_wf equal-wf-T-base compose_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality setElimination rename baseClosed because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].    (homeomorphic(X;dX;Y;dY)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-06_23_14
Last ObjectModification: 2019_10_02-AM-09_58_54

Theory : reals


Home Index