Nuprl Lemma : mconverges_wf

[X:Type]. ∀[d:X ⟶ X ⟶ ℝ]. ∀[x:ℕ ⟶ X].  (x[n]↓ as n→∞ ∈ ℙ)


Proof




Definitions occuring in Statement :  mconverges: x[n]↓ as n→∞ real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mconverges: x[n]↓ as n→∞ prop: exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  mconverges-to_wf istype-nat real_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality_alt applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType because_Cache instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:X  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbN{}  {}\mrightarrow{}  X].    (x[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-06_40_09
Last ObjectModification: 2019_10_02-AM-10_52_55

Theory : reals


Home Index