Nuprl Lemma : mconverges_wf
∀[X:Type]. ∀[d:X ⟶ X ⟶ ℝ]. ∀[x:ℕ ⟶ X].  (x[n]↓ as n→∞ ∈ ℙ)
Proof
Definitions occuring in Statement : 
mconverges: x[n]↓ as n→∞
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mconverges: x[n]↓ as n→∞
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
mconverges-to_wf, 
istype-nat, 
real_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality_alt, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:X  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbN{}  {}\mrightarrow{}  X].    (x[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-06_40_09
Last ObjectModification:
2019_10_02-AM-10_52_55
Theory : reals
Home
Index