Nuprl Lemma : meqfun_wf
∀[A,X:Type]. ∀[d:metric(X)]. ∀[f,g:A ⟶ X].  (meqfun(d;A;f;g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
meqfun: meqfun(d;A;f;g)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
meqfun: meqfun(d;A;f;g)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
Lemmas referenced : 
meq_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[A,X:Type].  \mforall{}[d:metric(X)].  \mforall{}[f,g:A  {}\mrightarrow{}  X].    (meqfun(d;A;f;g)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-06_29_07
Last ObjectModification:
2019_10_02-AM-10_04_13
Theory : reals
Home
Index