Nuprl Lemma : meqfun_wf

[A,X:Type]. ∀[d:metric(X)]. ∀[f,g:A ⟶ X].  (meqfun(d;A;f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  meqfun: meqfun(d;A;f;g) metric: metric(X) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T meqfun: meqfun(d;A;f;g) prop: all: x:A. B[x]
Lemmas referenced :  meq_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies functionIsType universeIsType instantiate universeEquality

Latex:
\mforall{}[A,X:Type].  \mforall{}[d:metric(X)].  \mforall{}[f,g:A  {}\mrightarrow{}  X].    (meqfun(d;A;f;g)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-06_29_07
Last ObjectModification: 2019_10_02-AM-10_04_13

Theory : reals


Home Index