Nuprl Lemma : metric-eq_wf
∀[X:Type]. ∀[d,d':X ⟶ X ⟶ ℝ].  (metric-eq(X;d;d') ∈ ℙ)
Proof
Definitions occuring in Statement : 
metric-eq: metric-eq(X;d;d')
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
metric-eq: metric-eq(X;d;d')
, 
prop: ℙ
, 
all: ∀x:A. B[x]
Lemmas referenced : 
req_wf, 
real_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType, 
universeIsType, 
because_Cache, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d,d':X  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbR{}].    (metric-eq(X;d;d')  \mmember{}  \mBbbP{})
Date html generated:
2019_10_29-AM-10_52_15
Last ObjectModification:
2019_10_02-AM-09_34_03
Theory : reals
Home
Index