Nuprl Lemma : metric-eq_wf

[X:Type]. ∀[d,d':X ⟶ X ⟶ ℝ].  (metric-eq(X;d;d') ∈ ℙ)


Proof




Definitions occuring in Statement :  metric-eq: metric-eq(X;d;d') real: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T metric-eq: metric-eq(X;d;d') prop: all: x:A. B[x]
Lemmas referenced :  req_wf real_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies functionIsType universeIsType because_Cache instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d,d':X  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbR{}].    (metric-eq(X;d;d')  \mmember{}  \mBbbP{})



Date html generated: 2019_10_29-AM-10_52_15
Last ObjectModification: 2019_10_02-AM-09_34_03

Theory : reals


Home Index