Nuprl Lemma : msep-or
∀[X:Type]. ∀d:metric(X). ∀x,y:X.  (x # y ⇒ (∀z:X. (x # z ∨ z # y)))
Proof
Definitions occuring in Statement : 
msep: x # y, 
metric: metric(X), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
msep: x # y, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ
Lemmas referenced : 
mdist-triangle-inequality, 
rless_transitivity1, 
int-to-real_wf, 
mdist_wf, 
radd_wf, 
msep_wf, 
metric_wf, 
istype-universe, 
radd-positive-implies
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
natural_numberEquality, 
independent_functionElimination, 
independent_isectElimination, 
inhabitedIsType, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}x,y:X.    (x  \#  y  {}\mRightarrow{}  (\mforall{}z:X.  (x  \#  z  \mvee{}  z  \#  y)))
 Date html generated: 
2019_10_29-AM-11_01_44
 Last ObjectModification: 
2019_10_02-AM-09_42_52
Theory : reals
Home
Index