Nuprl Lemma : partition-refines_weakening

I:Interval. ∀P,Q:partition(I).  ((P Q ∈ partition(I))  refines Q) supposing icompact(I)


Proof




Definitions occuring in Statement :  partition-refines: refines Q partition: partition(I) icompact: icompact(I) interval: Interval uimplies: supposing a all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] partition-refines: refines Q partition: partition(I)
Lemmas referenced :  partition-refines_wf equal_wf partition_wf icompact_wf interval_wf frs-refines_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut hypothesis thin hyp_replacement equalitySymmetry Error :applyLambdaEquality,  introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality independent_isectElimination sqequalRule isectElimination setElimination rename because_Cache independent_functionElimination

Latex:
\mforall{}I:Interval.  \mforall{}P,Q:partition(I).    ((P  =  Q)  {}\mRightarrow{}  P  refines  Q)  supposing  icompact(I)



Date html generated: 2016_10_26-AM-09_41_26
Last ObjectModification: 2016_07_12-AM-08_22_08

Theory : reals


Home Index