Nuprl Lemma : partition-refines_weakening
∀I:Interval. ∀P,Q:partition(I).  ((P = Q ∈ partition(I)) 
⇒ P refines Q) supposing icompact(I)
Proof
Definitions occuring in Statement : 
partition-refines: P refines Q
, 
partition: partition(I)
, 
icompact: icompact(I)
, 
interval: Interval
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
partition-refines: P refines Q
, 
partition: partition(I)
Lemmas referenced : 
partition-refines_wf, 
equal_wf, 
partition_wf, 
icompact_wf, 
interval_wf, 
frs-refines_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
hypothesis, 
thin, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination
Latex:
\mforall{}I:Interval.  \mforall{}P,Q:partition(I).    ((P  =  Q)  {}\mRightarrow{}  P  refines  Q)  supposing  icompact(I)
Date html generated:
2016_10_26-AM-09_41_26
Last ObjectModification:
2016_07_12-AM-08_22_08
Theory : reals
Home
Index