Nuprl Lemma : real-continuity4-ext

a,b:ℝ.
  ∀f:[a, b] ⟶ℝ
    (∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  ((f x) (f y)))
    ⇐⇒ ∀k:ℕ+. ∃d:{d:ℝr0 < d} . ∀x,y:{x:ℝx ∈ [a, b]} .  ((|x y| ≤ d)  (|(f x) y| ≤ (r1/r(k))))) 
  supposing a < b


Proof




Definitions occuring in Statement :  rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y req: y int-to-real: r(n) real: nat_plus: + uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  apply: a natural_number: $n
Definitions unfolded in proof :  bfalse: ff it: btrue: tt ifthenelse: if then else fi  subtract: m so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) uall: [x:A]. B[x] cantor-to-int-uniform-continuity real-continuity1 real-continuity4 member: t ∈ T
Lemmas referenced :  cantor-to-int-uniform-continuity real-continuity1 real-continuity4 lifting-strict-callbyvalue strict4-spread
Rules used in proof :  equalitySymmetry equalityTransitivity independent_isectElimination voidEquality voidElimination isect_memberEquality baseClosed isectElimination sqequalHypSubstitution lemma_by_obid thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}a,b:\mBbbR{}.
    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}
        (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y)))
        \mLeftarrow{}{}\mRightarrow{}  \mforall{}k:\mBbbN{}\msupplus{}
                    \mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                      \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|(f  x)  -  f  y|  \mleq{}  (r1/r(k))))) 
    supposing  a  <  b



Date html generated: 2016_05_18-AM-11_13_11
Last ObjectModification: 2016_01_17-AM-00_16_29

Theory : reals


Home Index