Nuprl Lemma : real-continuity4-ext
∀a,b:ℝ.
  ∀f:[a, b] ⟶ℝ
    (∀x,y:{x:ℝ| x ∈ [a, b]} .  ((x = y) 
⇒ ((f x) = (f y)))
    
⇐⇒ ∀k:ℕ+. ∃d:{d:ℝ| r0 < d} . ∀x,y:{x:ℝ| x ∈ [a, b]} .  ((|x - y| ≤ d) 
⇒ (|(f x) - f y| ≤ (r1/r(k))))) 
  supposing a < b
Proof
Definitions occuring in Statement : 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
bfalse: ff
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
cantor-to-int-uniform-continuity, 
real-continuity1, 
real-continuity4, 
member: t ∈ T
Lemmas referenced : 
cantor-to-int-uniform-continuity, 
real-continuity1, 
real-continuity4, 
lifting-strict-callbyvalue, 
strict4-spread
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}a,b:\mBbbR{}.
    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}
        (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y)))
        \mLeftarrow{}{}\mRightarrow{}  \mforall{}k:\mBbbN{}\msupplus{}
                    \mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                      \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|(f  x)  -  f  y|  \mleq{}  (r1/r(k))))) 
    supposing  a  <  b
Date html generated:
2016_05_18-AM-11_13_11
Last ObjectModification:
2016_01_17-AM-00_16_29
Theory : reals
Home
Index