Nuprl Lemma : real-continuity4

a,b:ℝ.
  ∀f:[a, b] ⟶ℝ
    (∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  ((f x) (f y)))
    ⇐⇒ ∀k:ℕ+. ∃d:{d:ℝr0 < d} . ∀x,y:{x:ℝx ∈ [a, b]} .  ((|x y| ≤ d)  (|(f x) y| ≤ (r1/r(k))))) 
  supposing a < b


Proof




Definitions occuring in Statement :  rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y req: y int-to-real: r(n) real: nat_plus: + uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  apply: a natural_number: $n
Definitions unfolded in proof :  top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) sq_exists: x:{A| B[x]} rless: x < y or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + subtype_rel: A ⊆B rev_implies:  Q so_apply: x[s] rfun: I ⟶ℝ so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] continuous: f[x] continuous for x ∈ I rccint: [l, u] i-approx: i-approx(I;n) squash: T sq_stable: SqStable(P) cand: c∧ B uiff: uiff(P;Q)
Lemmas referenced :  req-iff-not-rneq rneq_wf sq_stable__rless icompact_wf i-approx_wf real-continuity1 nat_plus_wf all_wf real_wf i-member_wf rccint_wf req_wf continuous-rneq req_witness subtype_rel_self rfun_wf set_wf exists_wf rless_wf int-to-real_wf rleq_wf rabs_wf rsub_wf rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination productElimination inrFormation natural_numberEquality independent_functionElimination introduction dependent_set_memberEquality applyEquality functionEquality because_Cache rename setElimination lambdaEquality sqequalRule setEquality isectElimination independent_pairFormation independent_isectElimination isect_memberFormation hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lemma_by_obid cut productEquality imageElimination baseClosed imageMemberEquality dependent_set_memberFormation

Latex:
\mforall{}a,b:\mBbbR{}.
    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}
        (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y)))
        \mLeftarrow{}{}\mRightarrow{}  \mforall{}k:\mBbbN{}\msupplus{}
                    \mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                      \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|(f  x)  -  f  y|  \mleq{}  (r1/r(k))))) 
    supposing  a  <  b



Date html generated: 2016_05_18-AM-11_12_45
Last ObjectModification: 2016_01_17-AM-00_17_43

Theory : reals


Home Index