Nuprl Lemma : continuous-rneq

I:Interval. ∀f:I ⟶ℝ.  (f[x] continuous for x ∈  (∀a,b:{x:ℝx ∈ I} .  (f[a] ≠ f[b]  a ≠ b)))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rneq: x ≠ y real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] rfun: I ⟶ℝ iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: exists: x:A. B[x] cand: c∧ B sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] label: ...$L... t rneq: x ≠ y or: P ∨ Q guard: {T} uimplies: supposing a continuous: f[x] continuous for x ∈ I sq_exists: x:{A| B[x]} nat_plus: + rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top subtype_rel: A ⊆B rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B
Lemmas referenced :  rneq-iff-rabs rless_irreflexivity rless_transitivity1 rleq_weakening_rless not-rless sq_stable__rleq sq_stable__all sq_stable__rless sq_stable__and squash_wf nat_plus_wf less_than'_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int rdiv_wf i-member-approx rleq_wf all_wf i-approx_wf icompact_wf i-approx-compact req_weakening radd-zero-both rless_functionality or_wf radd_wf interval_wf rfun_wf continuous_wf i-member_wf real_wf set_wf rneq_wf sq_stable__i-member i-approx-containing2 rless_wf int-to-real_wf rabs-difference-lower-bound rsub_wf rabs_wf small-reciprocal-real
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality isectElimination applyEquality sqequalRule hypothesisEquality hypothesis natural_numberEquality productElimination independent_functionElimination setElimination rename introduction imageMemberEquality baseClosed imageElimination independent_pairFormation lambdaEquality setEquality unionElimination inrFormation inlFormation because_Cache addLevel orFunctionality independent_isectElimination isect_memberEquality functionEquality dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll minusEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  (\mforall{}a,b:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    (f[a]  \mneq{}  f[b]  {}\mRightarrow{}  a  \mneq{}  b)))



Date html generated: 2016_05_18-AM-09_08_58
Last ObjectModification: 2016_01_17-AM-02_37_40

Theory : reals


Home Index