Nuprl Lemma : i-approx-compact

I:Interval. ∀n:ℕ+. ∀r:ℝ.  ((r ∈ i-approx(I;n))  icompact(i-approx(I;n)))


Proof




Definitions occuring in Statement :  icompact: icompact(I) i-approx: i-approx(I;n) i-member: r ∈ I interval: Interval real: nat_plus: + all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q icompact: icompact(I) and: P ∧ Q cand: c∧ B member: t ∈ T prop: uall: [x:A]. B[x] i-nonvoid: i-nonvoid(I) exists: x:A. B[x]
Lemmas referenced :  i-approx-closed i-approx-finite i-member_wf i-approx_wf real_wf nat_plus_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis because_Cache isectElimination dependent_pairFormation

Latex:
\mforall{}I:Interval.  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}r:\mBbbR{}.    ((r  \mmember{}  i-approx(I;n))  {}\mRightarrow{}  icompact(i-approx(I;n)))



Date html generated: 2016_05_18-AM-08_46_17
Last ObjectModification: 2015_12_27-PM-11_48_19

Theory : reals


Home Index