Step
*
1
1
2
1
of Lemma
real-subset-connected-lemma
.....antecedent.....
1. X : ℝ ⟶ ℙ
2. dense-in-interval((-∞, ∞);X)
3. a : {x:ℝ| X x} ⟶ 𝔹
4. b : {x:ℝ| X x} ⟶ 𝔹
5. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
6. a0 : {x:ℝ| X x}
7. b0 : {x:ℝ| X x}
8. ↑(a a0)
9. ↑(b b0)
10. a0 < b0
11. h : ℕ ⟶ ({x:ℝ| X x} × {x:ℝ| X x} )
12. ((fst(h[0])) < (snd(h[0])))
∧ (∀n:ℕ
((↑(a (fst(h[n]))))
∧ (↑(b (snd(h[n]))))
∧ let a,b = h[n]
in ∃p:{x:ℝ| X x}
(((a < p) ∧ (p < b))
∧ (((h[n + 1] = <a, p> ∈ (ℝ × ℝ)) ∧ ((p - a) ≤ ((r(2)/r(3)) * (b - a))))
∨ ((h[n + 1] = <p, b> ∈ (ℝ × ℝ)) ∧ ((b - p) ≤ ((r(2)/r(3)) * (b - a))))))))
⊢ ∀n:ℕ. (((fst(h[n])) ≤ (fst(h[n + 1]))) ∧ ((fst(h[n + 1])) ≤ (snd(h[n + 1]))) ∧ ((snd(h[n + 1])) ≤ (snd(h[n]))))
BY
{ (D -1
THEN ParallelLast
THEN ExRepD
THEN MoveToConcl (-1)
THEN (GenConclTerm ⌜h[n]⌝⋅ THENA Auto)
THEN D -2
THEN Reduce 0
THEN (D 0 THENA Auto)
THEN RepeatFor 4 (D -1)
THEN MoveToConcl (-3)
THEN (DupHyp (-2) THEN MoveToConcl (-1) THEN (GenConcl ⌜h[n + 1] = z ∈ (ℝ × ℝ)⌝⋅ THENA Auto))
THEN All Thin
THEN (D 0 THENA Auto)
THEN RWO "-1" 0
THEN Reduce 0
THEN Auto) }
Latex:
Latex:
.....antecedent.....
1. X : \mBbbR{} {}\mrightarrow{} \mBbbP{}
2. dense-in-interval((-\minfty{}, \minfty{});X)
3. a : \{x:\mBbbR{}| X x\} {}\mrightarrow{} \mBbbB{}
4. b : \{x:\mBbbR{}| X x\} {}\mrightarrow{} \mBbbB{}
5. \mforall{}x:\{x:\mBbbR{}| X x\} . ((\muparrow{}(a x)) \mvee{} (\muparrow{}(b x)))
6. a0 : \{x:\mBbbR{}| X x\}
7. b0 : \{x:\mBbbR{}| X x\}
8. \muparrow{}(a a0)
9. \muparrow{}(b b0)
10. a0 < b0
11. h : \mBbbN{} {}\mrightarrow{} (\{x:\mBbbR{}| X x\} \mtimes{} \{x:\mBbbR{}| X x\} )
12. ((fst(h[0])) < (snd(h[0])))
\mwedge{} (\mforall{}n:\mBbbN{}
((\muparrow{}(a (fst(h[n]))))
\mwedge{} (\muparrow{}(b (snd(h[n]))))
\mwedge{} let a,b = h[n]
in \mexists{}p:\{x:\mBbbR{}| X x\}
(((a < p) \mwedge{} (p < b))
\mwedge{} (((h[n + 1] = <a, p>) \mwedge{} ((p - a) \mleq{} ((r(2)/r(3)) * (b - a))))
\mvee{} ((h[n + 1] = <p, b>) \mwedge{} ((b - p) \mleq{} ((r(2)/r(3)) * (b - a))))))))
\mvdash{} \mforall{}n:\mBbbN{}
(((fst(h[n])) \mleq{} (fst(h[n + 1])))
\mwedge{} ((fst(h[n + 1])) \mleq{} (snd(h[n + 1])))
\mwedge{} ((snd(h[n + 1])) \mleq{} (snd(h[n]))))
By
Latex:
(D -1
THEN ParallelLast
THEN ExRepD
THEN MoveToConcl (-1)
THEN (GenConclTerm \mkleeneopen{}h[n]\mkleeneclose{}\mcdot{} THENA Auto)
THEN D -2
THEN Reduce 0
THEN (D 0 THENA Auto)
THEN RepeatFor 4 (D -1)
THEN MoveToConcl (-3)
THEN (DupHyp (-2) THEN MoveToConcl (-1) THEN (GenConcl \mkleeneopen{}h[n + 1] = z\mkleeneclose{}\mcdot{} THENA Auto))
THEN All Thin
THEN (D 0 THENA Auto)
THEN RWO "-1" 0
THEN Reduce 0
THEN Auto)
Home
Index