Nuprl Lemma : real-subset-connected-lemma
∀X:ℝ ⟶ ℙ
  (dense-in-interval((-∞, ∞);X)
  
⇒ (∀a,b:{x:ℝ| X x}  ⟶ 𝔹.
        ((∃x:{x:ℝ| X x} . (↑(a x)))
        
⇒ (∃x:{x:ℝ| X x} . (↑(b x)))
        
⇒ (∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x))))
        
⇒ (∃f,g:ℕ ⟶ {x:ℝ| X x} 
             ∃x:ℝ. ((∀n:ℕ. (↑(a (f n)))) ∧ (∀n:ℕ. (↑(b (g n)))) ∧ lim n→∞.f n = x ∧ lim n→∞.g n = x)))))
Proof
Definitions occuring in Statement : 
dense-in-interval: dense-in-interval(I;X)
, 
riiint: (-∞, ∞)
, 
converges-to: lim n→∞.x[n] = y
, 
real: ℝ
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
dense-in-interval: dense-in-interval(I;X)
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
sq_type: SQType(T)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
rge: x ≥ y
, 
rgt: x > y
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
sq_stable: SqStable(P)
, 
nat: ℕ
, 
le: A ≤ B
, 
real: ℝ
, 
ge: i ≥ j 
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
label: ...$L... t
, 
rbetween: x≤y≤z
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
int_upper: {i...}
Lemmas referenced : 
dense-in-interval_wf, 
riiint_wf, 
subtype_rel_dep_function, 
real_wf, 
i-member_wf, 
member_riiint_lemma, 
subtype_rel_self, 
set_wf, 
rless_wf, 
assert_wf, 
all_wf, 
or_wf, 
bool_wf, 
rdiv_wf, 
radd_wf, 
rmul_wf, 
int-to-real_wf, 
rless-int, 
true_wf, 
rmul_preserves_rless, 
rmul_preserves_rleq, 
rsub_wf, 
rleq_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
subtype_base_sq, 
int_subtype_base, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
nequal_wf, 
rless-implies-rless, 
req-iff-rsub-is-0, 
rless_functionality, 
req_transitivity, 
radd_functionality, 
rmul-rinv3, 
int-rinv-cancel, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
rleq_functionality, 
rless_transitivity2, 
rleq_weakening_rless, 
rleq_functionality_wrt_implies, 
radd_functionality_wrt_rless1, 
rleq_weakening_equal, 
rleq_weakening, 
radd-preserves-rleq, 
sq_stable__rless, 
pi1_wf_top, 
pi2_wf, 
equal_wf, 
exists_wf, 
subtype_rel_product, 
top_wf, 
primrec_wf, 
int_seg_wf, 
nat_wf, 
primrec0_lemma, 
false_wf, 
le_wf, 
sq_stable__less_than, 
nat_properties, 
nat_plus_wf, 
decidable__le, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
sq_stable__assert, 
add-subtract-cancel, 
bool_subtype_base, 
squash_wf, 
eq_int_eq_false, 
bfalse_wf, 
iff_weakening_equal, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
not_functionality_wrt_uiff, 
less_than_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
ifthenelse_wf, 
equal_functionality_wrt_subtype_rel2, 
rless_transitivity1, 
real-regular, 
and_wf, 
regular-int-seq_wf, 
rmul_preserves_rleq2, 
rleq-int, 
rless_functionality_wrt_implies, 
common-limit-squeeze, 
rnexp_wf, 
rnexp-converges-ext, 
rabs_wf, 
rleq-int-fractions2, 
rless-int-fractions3, 
rabs-of-nonneg, 
req_weakening, 
rmul-limit, 
constant-limit, 
converges-to_functionality, 
rmul_comm, 
rmul-zero, 
ge_wf, 
less_than'_wf, 
subtract_wf, 
int_term_value_subtract_lemma, 
exp0_lemma, 
rsub_functionality_wrt_rleq, 
rminus_wf, 
itermMinus_wf, 
rnexp_zero_lemma, 
real_term_value_minus_lemma, 
exp-nondecreasing, 
subtract-add-cancel, 
rbetween_wf, 
rnexp_step, 
rless-int-fractions2, 
rleq-implies-rleq, 
rmul_functionality, 
converges-to_wf, 
rless-cases, 
rneq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
instantiate, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
setEquality, 
independent_isectElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
functionEquality, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
inrFormation, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation, 
productEquality, 
intEquality, 
unionElimination, 
approximateComputation, 
equalityTransitivity, 
equalitySymmetry, 
minusEquality, 
int_eqEquality, 
imageElimination, 
independent_pairEquality, 
functionExtensionality, 
inlFormation, 
promote_hyp, 
addEquality, 
baseApply, 
closedConclusion, 
equalityElimination, 
applyLambdaEquality, 
multiplyEquality, 
intWeakElimination, 
axiomEquality, 
hyp_replacement
Latex:
\mforall{}X:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}
    (dense-in-interval((-\minfty{},  \minfty{});X)
    {}\mRightarrow{}  (\mforall{}a,b:\{x:\mBbbR{}|  X  x\}    {}\mrightarrow{}  \mBbbB{}.
                ((\mexists{}x:\{x:\mBbbR{}|  X  x\}  .  (\muparrow{}(a  x)))
                {}\mRightarrow{}  (\mexists{}x:\{x:\mBbbR{}|  X  x\}  .  (\muparrow{}(b  x)))
                {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  X  x\}  .  ((\muparrow{}(a  x))  \mvee{}  (\muparrow{}(b  x))))
                {}\mRightarrow{}  (\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \{x:\mBbbR{}|  X  x\} 
                          \mexists{}x:\mBbbR{}
                            ((\mforall{}n:\mBbbN{}.  (\muparrow{}(a  (f  n))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (\muparrow{}(b  (g  n))))  \mwedge{}  lim  n\mrightarrow{}\minfty{}.f  n  =  x  \mwedge{}  lim  n\mrightarrow{}\minfty{}.g  n  =  x)))))
Date html generated:
2019_10_30-AM-07_21_21
Last ObjectModification:
2018_08_31-AM-10_00_27
Theory : reals
Home
Index