Nuprl Lemma : real-subset-connected-lemma

X:ℝ ⟶ ℙ
  (dense-in-interval((-∞, ∞);X)
   (∀a,b:{x:ℝx}  ⟶ 𝔹.
        ((∃x:{x:ℝx} (↑(a x)))
         (∃x:{x:ℝx} (↑(b x)))
         (∀x:{x:ℝx} ((↑(a x)) ∨ (↑(b x))))
         (∃f,g:ℕ ⟶ {x:ℝx} 
             ∃x:ℝ((∀n:ℕ(↑(a (f n)))) ∧ (∀n:ℕ(↑(b (g n)))) ∧ lim n→∞.f x ∧ lim n→∞.g x)))))


Proof




Definitions occuring in Statement :  dense-in-interval: dense-in-interval(I;X) riiint: (-∞, ∞) converges-to: lim n→∞.x[n] y real: nat: assert: b bool: 𝔹 prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top dense-in-interval: dense-in-interval(I;X) rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True exists: x:A. B[x] cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rless: x < y sq_exists: x:A [B[x]] nat_plus: + decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False sq_type: SQType(T) int_nzero: -o nequal: a ≠ b ∈  rdiv: (x/y) req_int_terms: t1 ≡ t2 rge: x ≥ y rgt: x > y pi1: fst(t) pi2: snd(t) sq_stable: SqStable(P) nat: le: A ≤ B real: ge: i ≥  bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b label: ...$L... t rbetween: x≤y≤z rleq: x ≤ y rnonneg: rnonneg(x) int_upper: {i...}
Lemmas referenced :  dense-in-interval_wf riiint_wf subtype_rel_dep_function real_wf i-member_wf member_riiint_lemma subtype_rel_self set_wf rless_wf assert_wf all_wf or_wf bool_wf rdiv_wf radd_wf rmul_wf int-to-real_wf rless-int true_wf rmul_preserves_rless rmul_preserves_rleq rsub_wf rleq_wf rinv_wf2 itermSubtract_wf itermMultiply_wf itermAdd_wf itermConstant_wf itermVar_wf subtype_base_sq int_subtype_base nat_plus_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf equal-wf-base nequal_wf rless-implies-rless req-iff-rsub-is-0 rless_functionality req_transitivity radd_functionality rmul-rinv3 int-rinv-cancel real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_add_lemma real_term_value_const_lemma real_term_value_var_lemma rleq_functionality rless_transitivity2 rleq_weakening_rless rleq_functionality_wrt_implies radd_functionality_wrt_rless1 rleq_weakening_equal rleq_weakening radd-preserves-rleq sq_stable__rless pi1_wf_top pi2_wf equal_wf exists_wf subtype_rel_product top_wf primrec_wf int_seg_wf nat_wf primrec0_lemma false_wf le_wf sq_stable__less_than nat_properties nat_plus_wf decidable__le intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_var_lemma sq_stable__assert add-subtract-cancel bool_subtype_base squash_wf eq_int_eq_false bfalse_wf iff_weakening_equal primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal assert-bnot not_functionality_wrt_uiff less_than_wf intformless_wf int_formula_prop_less_lemma ifthenelse_wf equal_functionality_wrt_subtype_rel2 rless_transitivity1 real-regular and_wf regular-int-seq_wf rmul_preserves_rleq2 rleq-int rless_functionality_wrt_implies common-limit-squeeze rnexp_wf rnexp-converges-ext rabs_wf rleq-int-fractions2 rless-int-fractions3 rabs-of-nonneg req_weakening rmul-limit constant-limit converges-to_functionality rmul_comm rmul-zero ge_wf less_than'_wf subtract_wf int_term_value_subtract_lemma exp0_lemma rsub_functionality_wrt_rleq rminus_wf itermMinus_wf rnexp_zero_lemma real_term_value_minus_lemma exp-nondecreasing subtract-add-cancel rbetween_wf rnexp_step rless-int-fractions2 rleq-implies-rleq rmul_functionality converges-to_wf rless-cases rneq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality applyEquality instantiate cumulativity sqequalRule lambdaEquality universeEquality setEquality independent_isectElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality setElimination rename functionEquality because_Cache dependent_set_memberEquality natural_numberEquality inrFormation productElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed dependent_pairFormation productEquality intEquality unionElimination approximateComputation equalityTransitivity equalitySymmetry minusEquality int_eqEquality imageElimination independent_pairEquality functionExtensionality inlFormation promote_hyp addEquality baseApply closedConclusion equalityElimination applyLambdaEquality multiplyEquality intWeakElimination axiomEquality hyp_replacement

Latex:
\mforall{}X:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}
    (dense-in-interval((-\minfty{},  \minfty{});X)
    {}\mRightarrow{}  (\mforall{}a,b:\{x:\mBbbR{}|  X  x\}    {}\mrightarrow{}  \mBbbB{}.
                ((\mexists{}x:\{x:\mBbbR{}|  X  x\}  .  (\muparrow{}(a  x)))
                {}\mRightarrow{}  (\mexists{}x:\{x:\mBbbR{}|  X  x\}  .  (\muparrow{}(b  x)))
                {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  X  x\}  .  ((\muparrow{}(a  x))  \mvee{}  (\muparrow{}(b  x))))
                {}\mRightarrow{}  (\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \{x:\mBbbR{}|  X  x\} 
                          \mexists{}x:\mBbbR{}
                            ((\mforall{}n:\mBbbN{}.  (\muparrow{}(a  (f  n))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (\muparrow{}(b  (g  n))))  \mwedge{}  lim  n\mrightarrow{}\minfty{}.f  n  =  x  \mwedge{}  lim  n\mrightarrow{}\minfty{}.g  n  =  x)))))



Date html generated: 2019_10_30-AM-07_21_21
Last ObjectModification: 2018_08_31-AM-10_00_27

Theory : reals


Home Index