Nuprl Lemma : rmatrix_wf

[a,b:ℕ].  (ℝ(a × b) ∈ Type)


Proof




Definitions occuring in Statement :  rmatrix: (a × b) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rmatrix: (a × b) nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B
Lemmas referenced :  int_seg_wf real_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis productElimination axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[a,b:\mBbbN{}].    (\mBbbR{}(a  \mtimes{}  b)  \mmember{}  Type)



Date html generated: 2019_10_30-AM-08_11_04
Last ObjectModification: 2019_09_18-PM-06_43_57

Theory : reals


Home Index