Nuprl Lemma : rmatrix_wf
∀[a,b:ℕ].  (ℝ(a × b) ∈ Type)
Proof
Definitions occuring in Statement : 
rmatrix: ℝ(a × b), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rmatrix: ℝ(a × b), 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B
Lemmas referenced : 
int_seg_wf, 
real_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[a,b:\mBbbN{}].    (\mBbbR{}(a  \mtimes{}  b)  \mmember{}  Type)
 Date html generated: 
2019_10_30-AM-08_11_04
 Last ObjectModification: 
2019_09_18-PM-06_43_57
Theory : reals
Home
Index