Nuprl Lemma : rmax-idempotent
∀[x:ℝ]. (rmax(x;x) = x)
Proof
Definitions occuring in Statement : 
rmax: rmax(x;y)
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
Lemmas referenced : 
rmax_lb, 
rleq_weakening_equal, 
rleq-rmax, 
rleq_antisymmetry, 
req_witness, 
rmax_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
productElimination, 
independent_isectElimination, 
hypothesis, 
independent_pairFormation, 
hypothesisEquality, 
independent_functionElimination
Latex:
\mforall{}[x:\mBbbR{}].  (rmax(x;x)  =  x)
Date html generated:
2016_05_18-AM-07_19_53
Last ObjectModification:
2015_12_28-AM-00_46_50
Theory : reals
Home
Index