Nuprl Lemma : rsqrt1
rsqrt(r1) = r1
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
req: x = y
, 
int-to-real: r(n)
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
req_inversion, 
int-to-real_wf, 
rsqrt_wf, 
rleq-int, 
false_wf, 
rleq_wf, 
rmul-one, 
rsqrt-unique
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination
Latex:
rsqrt(r1)  =  r1
Date html generated:
2016_10_26-AM-10_08_54
Last ObjectModification:
2016_10_11-PM-03_01_27
Theory : reals
Home
Index