Nuprl Lemma : rv-between_functionality2
∀n:ℕ. ∀a1,a2,b1,b2,c1,c2:ℝ^n.  ((¬a1 ≠ a2) ⇒ (¬b1 ≠ b2) ⇒ (¬c1 ≠ c2) ⇒ (a1-b1-c1 ⇐⇒ a2-b2-c2))
Proof
Definitions occuring in Statement : 
rv-between: a-b-c, 
real-vec-sep: a ≠ b, 
real-vec: ℝ^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ
Lemmas referenced : 
rv-between_functionality, 
not-real-vec-sep-iff-eq, 
not_wf, 
real-vec-sep_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
because_Cache
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a1,a2,b1,b2,c1,c2:\mBbbR{}\^{}n.    ((\mneg{}a1  \mneq{}  a2)  {}\mRightarrow{}  (\mneg{}b1  \mneq{}  b2)  {}\mRightarrow{}  (\mneg{}c1  \mneq{}  c2)  {}\mRightarrow{}  (a1-b1-c1  \mLeftarrow{}{}\mRightarrow{}  a2-b2-c2))
 Date html generated: 
2016_10_26-AM-10_32_04
 Last ObjectModification: 
2016_09_25-PM-00_58_17
Theory : reals
Home
Index