Nuprl Lemma : rv-extend

n:ℕ. ∀a,b,c,d:ℝ^n.  (a ≠  (∃x:{x:ℝ^n| bx=cd} (c ≠  a-b-x)))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec-between: a-b-c real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] exists: x:A. B[x] and: P ∧ Q rv-congruent: ab=cd req: y prop: real-vec-sep: a ≠ b
Lemmas referenced :  rv-extend-1 real-vec-dist_wf rv-congruent_wf real-vec-sep_wf real-vec-between_wf real-vec_wf nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination productElimination dependent_pairFormation dependent_set_memberEquality functionEquality setElimination rename because_Cache

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.    (a  \mneq{}  b  {}\mRightarrow{}  (\mexists{}x:\{x:\mBbbR{}\^{}n|  bx=cd\}  .  (c  \mneq{}  d  {}\mRightarrow{}  a-b-x)))



Date html generated: 2016_10_26-AM-10_39_48
Last ObjectModification: 2016_09_25-PM-11_50_49

Theory : reals


Home Index