Nuprl Lemma : separated-partitions_wf

I:Interval. ∀P,Q:partition(I).  (separated-partitions(P;Q) ∈ ℙsupposing icompact(I)


Proof




Definitions occuring in Statement :  separated-partitions: separated-partitions(P;Q) partition: partition(I) icompact: icompact(I) interval: Interval uimplies: supposing a prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T separated-partitions: separated-partitions(P;Q) uall: [x:A]. B[x] partition: partition(I) prop:
Lemmas referenced :  and_wf frs-increasing_wf frs-separated_wf partition_wf icompact_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_isectElimination lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}I:Interval.  \mforall{}P,Q:partition(I).    (separated-partitions(P;Q)  \mmember{}  \mBbbP{})  supposing  icompact(I)



Date html generated: 2016_05_18-AM-09_27_55
Last ObjectModification: 2015_12_27-PM-11_20_41

Theory : reals


Home Index