Nuprl Lemma : frs-separated_wf

[p,q:ℝ List].  (frs-separated(p;q) ∈ ℙ)


Proof




Definitions occuring in Statement :  frs-separated: frs-separated(p;q) real: list: List uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T frs-separated: frs-separated(p;q) so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  l_all_wf2 real_wf rneq_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality setElimination rename setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[p,q:\mBbbR{}  List].    (frs-separated(p;q)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_53_40
Last ObjectModification: 2015_12_27-PM-11_39_44

Theory : reals


Home Index