Nuprl Lemma : frs-separated_wf
∀[p,q:ℝ List].  (frs-separated(p;q) ∈ ℙ)
Proof
Definitions occuring in Statement : 
frs-separated: frs-separated(p;q)
, 
real: ℝ
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
frs-separated: frs-separated(p;q)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
l_all_wf2, 
real_wf, 
rneq_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[p,q:\mBbbR{}  List].    (frs-separated(p;q)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_53_40
Last ObjectModification:
2015_12_27-PM-11_39_44
Theory : reals
Home
Index