Nuprl Lemma : series-converges-rmul
∀c:ℝ. ∀x:ℕ ⟶ ℝ.  (Σn.x[n]↓ 
⇒ Σn.x[n] * c↓)
Proof
Definitions occuring in Statement : 
series-converges: Σn.x[n]↓
, 
rmul: a * b
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
series-converges: Σn.x[n]↓
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
rmul_wf, 
series-sum-linear3, 
nat_wf, 
series-sum_wf, 
series-converges_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_functionElimination, 
functionEquality
Latex:
\mforall{}c:\mBbbR{}.  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.    (\mSigma{}n.x[n]\mdownarrow{}  {}\mRightarrow{}  \mSigma{}n.x[n]  *  c\mdownarrow{})
Date html generated:
2016_05_18-AM-07_58_49
Last ObjectModification:
2015_12_28-AM-01_09_15
Theory : reals
Home
Index