Nuprl Lemma : series-sum-linear3
∀x:ℕ ⟶ ℝ. ∀a,c:ℝ. (Σn.x[n] = a
⇒ Σn.x[n] * c = a * c)
Proof
Definitions occuring in Statement :
series-sum: Σn.x[n] = a
,
rmul: a * b
,
real: ℝ
,
nat: ℕ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
series-sum: Σn.x[n] = a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
converges-to: lim n→∞.x[n] = y
,
member: t ∈ T
,
exists: ∃x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
nat_plus: ℕ+
,
sq_type: SQType(T)
,
guard: {T}
,
nat: ℕ
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
sq_exists: ∃x:{A| B[x]}
,
rneq: x ≠ y
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
rsub: x - y
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
rge: x ≥ y
Lemmas referenced :
integer-bound,
equal_wf,
set-value-type,
less_than_wf,
int-value-type,
subtype_base_sq,
nat_plus_wf,
set_subtype_base,
int_subtype_base,
converges-to_wf,
rsum_wf,
nat_wf,
int_seg_subtype_nat,
false_wf,
int_seg_wf,
real_wf,
mul_nat_plus,
le_wf,
all_wf,
rleq_wf,
rabs_wf,
rsub_wf,
rmul_wf,
rdiv_wf,
int-to-real_wf,
rless-int,
nat_properties,
nat_plus_properties,
decidable__lt,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
rless_wf,
rmul_preserves_rleq2,
mul_bounds_1b,
zero-rleq-rabs,
less_than'_wf,
radd_wf,
rminus_wf,
rleq_functionality,
req_inversion,
rabs-rmul,
req_weakening,
rabs_functionality,
rmul-distrib2,
radd_functionality,
rsum_linearity3,
rmul_over_rminus,
rleq_functionality_wrt_implies,
rleq_weakening_equal,
rleq-int-fractions2,
decidable__le,
intformle_wf,
itermMultiply_wf,
int_formula_prop_le_lemma,
int_term_value_mul_lemma,
uiff_transitivity,
rmul-int-rdiv,
rmul_comm,
rleq-int-fractions
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
sqequalHypSubstitution,
cut,
introduction,
extract_by_obid,
dependent_functionElimination,
thin,
hypothesisEquality,
productElimination,
because_Cache,
cutEval,
dependent_set_memberEquality,
isectElimination,
equalityTransitivity,
hypothesis,
equalitySymmetry,
lambdaEquality,
independent_isectElimination,
intEquality,
natural_numberEquality,
setElimination,
rename,
promote_hyp,
instantiate,
cumulativity,
independent_functionElimination,
applyEquality,
functionExtensionality,
addEquality,
independent_pairFormation,
functionEquality,
inrFormation,
unionElimination,
dependent_pairFormation,
int_eqEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
isect_memberFormation,
multiplyEquality,
independent_pairEquality,
minusEquality,
axiomEquality
Latex:
\mforall{}x:\mBbbN{} {}\mrightarrow{} \mBbbR{}. \mforall{}a,c:\mBbbR{}. (\mSigma{}n.x[n] = a {}\mRightarrow{} \mSigma{}n.x[n] * c = a * c)
Date html generated:
2017_10_03-AM-09_18_01
Last ObjectModification:
2017_07_28-AM-07_43_19
Theory : reals
Home
Index