Nuprl Lemma : small-real-test_wf
∀[k:ℕ+]. ∀[z:ℝ].  (small-real-test(k;z) ∈ ((r1)/k < z) ∨ (z < (r(4))/k))
Proof
Definitions occuring in Statement : 
small-real-test: small-real-test(k;z)
, 
rless: x < y
, 
int-rdiv: (a)/k1
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-real-test: small-real-test(k;z)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rless-case_wf, 
int-rdiv_wf, 
nat_plus_inc_int_nzero, 
int-to-real_wf, 
real_wf, 
nat_plus_wf, 
int-rdiv-rless-witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
closedConclusion, 
natural_numberEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_functionElimination
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[z:\mBbbR{}].    (small-real-test(k;z)  \mmember{}  ((r1)/k  <  z)  \mvee{}  (z  <  (r(4))/k))
Date html generated:
2019_10_29-AM-10_05_01
Last ObjectModification:
2019_06_19-PM-05_57_40
Theory : reals
Home
Index