Nuprl Lemma : sq_stable__is-msfun

[X,Y:Type].  ∀d:metric(X). ∀[d':metric(Y)]. ∀[f:X ⟶ Y].  SqStable(is-msfun(X;d;Y;d';f))


Proof




Definitions occuring in Statement :  is-msfun: is-msfun(X;d;Y;d';f) metric: metric(X) sq_stable: SqStable(P) uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] is-msfun: is-msfun(X;d;Y;d';f) member: t ∈ T so_lambda: λ2x.t[x] prop: implies:  Q so_apply: x[s]
Lemmas referenced :  sq_stable__all msep_wf sq_stable__msep metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt functionEquality applyEquality hypothesis universeIsType independent_functionElimination because_Cache inhabitedIsType dependent_functionElimination functionIsType instantiate universeEquality

Latex:
\mforall{}[X,Y:Type].    \mforall{}d:metric(X).  \mforall{}[d':metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    SqStable(is-msfun(X;d;Y;d';f))



Date html generated: 2019_10_30-AM-06_25_50
Last ObjectModification: 2019_10_02-AM-10_01_15

Theory : reals


Home Index