Nuprl Lemma : sq_stable__is-msfun
∀[X,Y:Type].  ∀d:metric(X). ∀[d':metric(Y)]. ∀[f:X ⟶ Y].  SqStable(is-msfun(X;d;Y;d';f))
Proof
Definitions occuring in Statement : 
is-msfun: is-msfun(X;d;Y;d';f), 
metric: metric(X), 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
is-msfun: is-msfun(X;d;Y;d';f), 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
implies: P ⇒ Q, 
so_apply: x[s]
Lemmas referenced : 
sq_stable__all, 
msep_wf, 
sq_stable__msep, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
applyEquality, 
hypothesis, 
universeIsType, 
independent_functionElimination, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X,Y:Type].    \mforall{}d:metric(X).  \mforall{}[d':metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    SqStable(is-msfun(X;d;Y;d';f))
 Date html generated: 
2019_10_30-AM-06_25_50
 Last ObjectModification: 
2019_10_02-AM-10_01_15
Theory : reals
Home
Index